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Our Universe is B.ig-, Old,
and full of strquures.

All of them are big
mysteries in the context of
Universe. '

ition




time

Inflation in the early Universe can solve
The Horizon Problem

Why is our Universe Big?
The Flatness Problem

Why is our Universe OIld?
The Monopole/Relic Problem

Why is our Universe free from exotic relics?
The Origin-of-Structure Problem

Why is our Universe full of structures?
' 4 reheating=Big Bang




Inflation realizes
not only

by exponential expansion

b Ut d I SO tiny Gaussian fluctuations

by quantum fluctuations.



What I wish to address is that

considerations of quantum loop
effects of perturbations greatly
constrain viable class of models.

wanted to

I present two specific cases,
one with non-Gaussianity
and the other with formation
of Primordial Black Holes.
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One-loop correction to the power spectrum in generic single-field inflation is calculated by using
standard perturbation theory. Because of the enhancement inversely proportional to the observed red tilt of
the spectral index of curvature perturbation, the correction turns out to be much larger than previously
anticipated. As a result, the primordial non-Gaussianity must be much smaller than the current
observational bound in order to warrant the validity of cosmological perturbation theory.
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Cosmological perturbatiO{m theory
Simplest canonical case § = Ef d*x=g|MZR — (3,9)* — 2V(¢)].

Incorporating comoving curvature perturbation ¢ as gij = az(t)ezc&j
with §¢=0 and a(t) o« eft

we calculate the action for the curvature perturbation ¢ to 2nd order

| ‘ . 1 . e
$@ = M2 / dt d°. [CQ - a—g(di@?} TR ZMfHZ

V behaves like a free massless scalar field
with a noncanonical normalization.

Introducing Mukhanov-Sasaki (MS) variable ¥ = Z(Mpl with

Z = aV 2€ , the second-order action becomes

. ’ I’ 1
§@ = [ drd®x [(v )2 — (0;v)* +27”2]- at) = — 47

7: conformal time



s® =1f dedix [(0)? - (@w)? +Z-v?|

It has a canonical kinetic term, so can easily be quantized.

Mukhanov Sasaki equation

Iy (kz _ Z_”) v, = 0. em v(x,1)= Ak |vi (D) et ™ +v*(T)€lTe‘ikT]
S k : ’ (2m)3 k k

Z—”=2a2H2(1+g+§5+£52+135+...j a(r)——ii 5=
Z 2 2 2 Hrl-¢ H #
For slow-roll inflation ¢=1 6 = 1we find Z_:%
7 T
vy + (kz TZZ) v, = 0. ﬂ 1
v —_ -kt
ve(0) = L (1 - =) e 4 Z (14 1) elke O
K —_— T — - .

A, =1and B, = 0 is the solution corresponding to the Minkowski
mode function (vacuum) at high frequency or in the beginning.



Quantization
v(k,7) =v, (7)), + V: (T)é‘ik

Since v has a canonical kinetic term, conjugate momentum is
simply 7(k,7) =V'(k,7) and the standard quantization

[V(k,7), (K, 7)] =ihS(k—K')  mmp [ip.al,

= (27)?6*(p + q)

can be done with the normalization v, v, — v,v; =i.

Curvature perturbation:

v v
Muz M av2e’

From ¢= we find the mode function

e—lkl’

(@ = () S+ ko).

where x denotes horizon crossing condition t = —1/k.




Quantization

5 (K, 7)
k =
¢ (k) M ,av/2e

=¢ ()4, +¢; ()&, [ap a.f_q] = (27)*3%(p + q)

Vacuum expectation value yields power spectrum <(p)=¢(p.7)

(CP)C(a) gy =2 (2m)°8 (P +a) (C(P)C(—=P)) o,  {CPIC(=P)) o) = |Cp(/‘*_)|.2

In the superhorizon regime —kz = 1, vacuum fluctuation is
constant and given by

2 4k’ B H*?
(27)°  8x°M §|8

47k> B
(2rz)’

A2 (r = 2%) =((s(K)s(=k)))

|§k|



“Classicalilzation” of curvature perturbation (

iH . | iH k Y k
(1) = 1+ikz)e™ - 1+0| | — - —kr = —
(0 2|v|p,\/gk3( Hike)e 2M gks[ ' uaHj H for k < a(t)H ( ’ aHj

v (r) =—¢,(r) in the superhorizon limit

So we find ¢(k.7)=¢(7)(& -4',)
and its conjugate momentum . The same operator

7%; (k,T) — (M " Z)2il(k,f) _ (M ; Z)Zgé (Z_)(ék _éik )/ dependenCe!

™

When the decaying mode is negligible, ¢(k,z) and 7. (k,7) have the same
operator dependence and apparently commute with each other.

Long-wave quantum fluctuations behave Origin of large scale

as if classical statistical fluctuations. - Stf}JCtheS and CMB
anisotropy




More precise statements
[f(k,r),ﬁg(k',r)] = [V(k,7), #(k',7)]=ihs(k —k’)  always holds.
What we find is

[E, D EK ) | = o5

2Ma’e

ihs(k-k’)]  decreases exponentially.

in standard slow-roll inflation with € ~const = 1.

In terms of the mode function

(llc*fk — (ilcflt, —

0 in standard slow-roll inflation.
2a2eM, ]



If one employs an inflation model producing a peaky
power spectrum on a small scale while satisfying CMB
constraints, one may produce PBHs found by GWs.

Amplitude?
of curvature
perturbation

(27
As(r_ kj 1076

2x107°
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In order to realize temporal enhancement of curvature perturbation,
one is tempted to adopt a model in which € decreases temporarily.

Af(r—z_”j._‘ ‘2 47Z'k3_ H?
< )T @ay Teemig £ =€

Ivanov, Naselsky, & Novikov (1994)
A V() CMB scale

PBH scale / €

SR: slow roll periods

H? =?( +V[¢]]

V4 3HFV 4] =0
5 . : _ - & = CONst = ¢,
qb.end Cfb(lte) qb.(ts ) | quMB | >
' SR USR SR '

USR: ultra-slow roll period (flat potential)

;2
V'[g]=0 @FBHq&——O Feca(t)] E=2Mq%leoca‘6 A7




. . Kinney (1998,2005), JY & Inoue (2002)
Ultra S|OW-FO|| (USR) |nflat|on Martin, Motohashi, & Suyama (2013)

qbz

- -6

~omEnz ¢
pl

&
ms) Second slow-roll parameter: 7 = P —=-6

In such a regime, contrary to the standard slow-roll inflation,
curvature perturbation grows even on superhorizon scale, as it
satisfies

d* G Gk _
dN2+(3—e+ )dN+(H) (k= 0. N__[Hdt

In the standard inflation with &,|7|= 1, on superhorizon,

¢ = const constant mode
¢, oce”" =a” decaying mode



. . Kinney (1998,2005), JY & Inoue (2002)
Ultra S|OW-FO|| (USR) |nflat|on Martin, Motohashi, & Suyama (2013)

qbz

- -6

~omEnz ¢
pl

&
ms) Second slow-roll parameter: 7 = P —=-6

In such a regime, contrary to the standard slow-roll inflation,
curvature perturbation grows even on superhorizon scale, as it
satisfies

d* G Gk _
dN2+(3—e+ )dN+(H) (k= 0. N__[Hdt

In the standard inflation with &,|7|= 1, on superhorizon,

¢, = const constant mode
¢, oce”" =a” decaying mode
In ultra slow-roll inflation withe = 1,7 =—6, on superhorizon

G, = const constant mode
¢ ce’™=a’> growing mode mmmp quantum nature?



Indeed we find

(802, 8(K0) | =55 ihd(k—K) ' Z

pl

I % 7! * 4
Sk Sk — Sk Sk azep 2. 8 /

pl
which induces significant correction as we will see shortly.

In USR, the standard wisdom does not apply!

NB Such superhorizon growth of perturbation was also found in the chaotic

new inflation model (JY 1999) and its analytic interpretation was given in
(Saito, JY, Nagata 2008).
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Chaotic new inflation and primordial spectrum of adiabatic fluctuations
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Primoredial black hole formation
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Figure 2. The evolution of slow-roll parameters « (left) and g (right) with the
values of the parameters (\, r) = (5.4 x 107" 0355 139M; ). In the right figare,
the dashed portions indicate where 5 < 0 while the solid portions indicate where
n>0

3.1. Evolution of curvature perturbation

Curvature perturbation in the comoving gauge (, in terms of which the amplitude of
perturbation in the intrinsic spatial curvature of the comoving shicing R, is written as

1
R< = ?v’g. (6)
p
‘ evolves acvording to an equation [20]:
L dda k. =
— e d — e | c— = 0, '
: an Te-ctagy (u” @ ()

where N = the mumber of efolds and (g is the Founer transform of (;

Prmordial black hole formation

2 v v - v v v
T —
Ve ik gyt e

10

12

1 . . . » . .
Y w0 e 190 195 20 205 210
logv/a)
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Mode function in ultra slow-roll inflation
Introducing Mukhanov-Sasaki (MS) variable v = z¢ M, with

Z = aV\ 2€, the mode equation reads

" 7" 3 1 1
17/ 2 Z s 212 e -2 =
vk + (k _7) vk — O. . 2a‘H (1+g+25+25 +255+...j
cancel
1 1
a(r)=—— " S= i

Hrl-¢ =H_(/&

"

For slow-roll inflation € =1, 0 = 1we find Z?:

o

For ultra slow-roll inflation we find ¢ = H(ﬁ?‘_

"

: 2
again —=—
Z T

vy + (k2 —T%) v, =0 both in SR and USR regimes!



Mode function in ultra slow-roll inflation

Initial slow-roll regime (CMB scale)

iH e—?k’r
7 — 1+ 1k
CAI(T) (QJ\fp] ESR) k3/2 ( T T)

Ultra slow-roll regime (PBH scale)

The mode function in this regime is

found by matching ¢, and ¢, at the
transition time 7.

v

Doa l0) B(E)

T v

Pcms

L 2
Pena Pte) O(ts) PcmB -
—ikT kT .
(7)) = 1 14+ ikt) — Bre™ (1 — ikt
i (7) sz1\/@ i (14 k) = Bye™ (1 — ik)
1 2.2 1 15 . 2 .
__1__ + k4T :X Bk::__S(-+?kTJ -2k,

33
grow oc @ 20k

20 k373



Aoy (k)

After some period of USR inflation, the system returns to SR regime
again and inflation is terminated at , .

At the second transition we perform similar matching again to
obtain the full solution of V,(Z).

T vi)

PBH R 4
AE(PBH) I Pena Plte) O(ts) Pcms
6
k
2 ~ A2 e
AS(PBH) ~ AS(SR) (ks) <k_>
S
) CMB
s(SR)\vx )
- (s f“““'l
k k k 3



So far we have considered only second-order action
of V' from the full action, which led to linear perturbation.

S == d*xy=g[MZR — (3,0)% — 2V(9)].
) S5 = M2 / dt d*z a’e [c - —(0 9 ]

(1

Third order terms generate non-Gaussianity and
one-loop correction to the power spectrum V= %

mp 5= 0 [t @ o 80+ A0 - 26060 - 3O+ JCBO0* + e

The most relevant is the last term T T
as n changes abruptly at transitions.

1
Hine(7) = __lef deEU'azf'(z




Unlike in particle physics, whose focus is transition
amplitude, we wish to evaluate an expectation value or

a correlation function.
1
Hine(7) = __lef d3x€77'a2('(2
In-in formalism
(O(1)) = <[T exp (?/ d7' Hip (T’))] O(1) [T exp (?/ clT’Hmt(T’))]>
O(1) = ¢(p1)¢(p2): evaluated toward the end of inflation 7 = 79 (— 0).

Perturbative expansion
(O(7)) = <O(T)>Iﬂ 2 + <<9(r)>(1.1) +{O(7))0.2)

(0 2) — / "l/ Jr2 H;p fl)Hillt.(T2)>
O T) (1,1) / dTL/ d"f_‘z Hint Tl)@ T)Hillt(T2)>



After substituting H;,(7) to the perturbative expansion, we find

<C(p)§( ))(1 1) = iﬂf [ dry CLQ(Tl)E(Tl)?],(Tl)/_ drs a’ TQ TQ 7’2 /H [ ] 53 kl + ko —|—k3)
x 0% (kg + ks + k) (¢ (ks 71)¢ (o, 1) (ks 71)C(P)C (=) (ka, TQ)C(k 72)C(Ke, 72)) |
CCPon = ~ Mm@ e [ an el [ H o

x 8% (ks + ks + ke) (C(P)¢(—p) (K1, 71)¢(ko, 71)C (Ka, 1) (Ka, T2)C(k 72)((ke, T2)) -

]53 k; + ko + k3)

ATI
Time integral is nonvanishing only at t; and t, B g
and the latter makes a dominant contribution. 0
: A
As a result, we find 7
-6

(CP)IC(=P)) 1y = (C(P)C(=P))) 1.1y + 2Re {C(P)C(—P))) (0.2)

A3k
:iﬂjsl (re)a™(7e) (An(7e))? /( )3 [4CPCCC’*CkkaqC + 8¢, CI*CPCA,CACQC
+ 8¢y 6 G Ch el

— Re (4GpGoClr ¢l Grih oG + 8GoGrCl ChChChCaCr + GGl e Gt



The leading term is given by

(COIC(=P)) 1) = 3 M () () (A ))? 16 / (d) 16716 I* (GG Tn(¢iet)]|

Ik _ Lo —1 takes a big value at the end
IM(Geie) = 5 (G Sie = $ici) = sa?e(ro)M% of USR regime as we argued.

6
_1 _1 g k4 H2
Im(clc.) = = Ho ) | = | =1
(gkgk) 4a2(z_e)gSR(aS/ae)6M§I 488RM§| ( e) (T j ks6 [4M §|ESRJ

e

H 1
att =1, where we have used k, =a(r,)H =- =——,

Hr, T,




The leading term is given by

(CBICB)) 1) = pMe (o () () x16 | 5 167167 T Gy5) (i)

—1 takes a big value at/the end
4a?e(ze)My; of USR reglm as we argued.

IM(3kdi) == (G G — Gidi) =

Im(’*)— -1 B -1 (r) T H 2
P P e PR D VENPA VR 4M2.85R

e

H 1
att = 1,, where we have used k, =a(r,)H = PRl
7o T

e

This is in contrast to the standard SR inflation
in which Im(¢,{;,) becomes exponentially small.



The leading term is given by

(IR ) = St () ) %16 [ S5 [IGRIGf Tngig)) Tn(dich)]

—1 takes a big value at/the end
4a?e(ze)My; of USR reglm as we argued.

(e - 1 I H?
P P e PR I VERP VERC k6 4M2.85R

H 1
att =1, where we have used k, =a(r,)H =- =——,

Hr, T,

IM(3kdi) == (G G — Gidi) =

One-loop correction

821y () = 7 (AN (1)) A% sry (P) . S 80 ()

2 k. ° k,
As(l)(p) (An(re)) [A (SR)(p)] (k > (1.1 +logk—>



For perturbation theory to be valid, we require
one loop correction << tree level (linear theory) result

6
A2y K Mgy (An(fe))z (SR)(P)( ) (11 +1ogye) « 1.

6° :36 2.1 107

ota ke <15, k. —0.03
we oDtaln . or AS(PBH) < 0.03 k_ .

S

(n, = 0.97 at k, = 0.05Mpc~1)



« Consider two examples that are of recent interest:
— PBHs as dark matter with mass 0(10"15)M@ corresponding
to scale O(10'*)Mpc~! has a bound A% pgyy < 0.01.
— PBHs as LIGO-Virgo BHs with mass O(10)M, corresponding
to scale 0(10%)Mpc~" has a bound Af ppyyy << 0.02.

* In both cases, the upper bound contradicts with typical requirement
to form a significant abundance of PBHs, which is AZpgyy) ~ 0(0.01).



A number of single-field inflation models accommodating
PBH formation have the same feature, namely, sharp
transition of 7.

® Bump or dip:
® Upward or downward step:
® Polynomial shape:

® Chaotic new inflation with a Coleman-Weinberg potential:



Conclusion

Single field inflation models predicting a large
non-Gaussianity or PBH formation are in trouble
through consideration of hlgher order qua
effects. A

uoljeur

Microphysical

zero-point - It's time to single out
fluctuations “the inflation model”!






Our first calculation incorporated only wavenumbers
leaving horizon during USR regime

ke
021y (D) = 7 (A1(Te))? A2 sry (P) ] 1 A
introducing hard cutoffs to k mtegral.

S(O) (k)

One of the referees claimed proper UV regularization
and renormalization would remove all the effects we
are arguing...

I would be much surprised if this were the case, namely,
if UV physics removes all nontrivial IR (yes, PBH is in the
IR regime in the context of UV renormalization) effect.
That would be much more interesting than what we are
claiming!!



Introducing UV divergence A

kuyv dk

ke
kaR Kk

D2y (k) = ([0

Total power spectrum reads
(

ng—1
p
A% (p) = D) (Ps) (p_> \

\

+J

Aa(te)
ke

1 5 .2 ke
S

dk
)TAg(O) (k)

A -1
2

+0 [((Aﬁ)ZAg(PBH))z]

where A =A/H.

>\

Y




Defining ,

° ) )
k k 2 _ AZ
2 2 - |1+ 7 (AU)ZA (0)(19* .U) ( ) —1.1— logk—e + logi+ a 5
Asc0y(P+) = A0y (Psr 1) | ks - N

\ 10 l((An)zAg(PBH))zl )

~N"

~

with it = %, the renormalized power spectrum reads

~

( 6 )
k, |
1+~ (AU) A s(0) (P*,M) logu +
S

2
\ +0 [((Aﬂ)z S(PBH)) ]

At renormalization scale u = H:
ns—1
S

A (p) = Aoy (oo 1t = H) (p) {1 +0 [((ATI)Z S(PBH)) ]}

A (P) = D5y (Per 1) |

~N"

Requirement to renormalize loop correction order by order:
(A)2 02 oy < 1 m===) The same conclusion
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A different method, so-called source method, using Maldacena’s
consistency relation would yield somewhat smaller one-loop correction
than what we find using the honest-to-god in-in perturbation theory.

3rd order action for the geometrical variable

.. — 2 2¢ ..
SO0 = Sndd] + 5al¢] + M3 [araaopo) (32) - U= (t)e™ 5
1

. 1 . 1 .. 1 1 ..
Shuk[(] = M2 f dt d3z a® [e%?c + ?e"’(a@?c — 2e(;COx — 55%% + §eg(aiaj><)2 + 26?;C§2]

Boundary terms

SelC] = My f dt & % {—%SH G+ F0(0:)? = 77 (0:€)?0%C — Z2¢(8:€)? x = €0~

4aH?
3

o . a . , ea® .,  na’
(0;0;¢0;0;x — 02CO%x) — mg(aiajxaiajx—a%@?x) - ﬁccg I (%0 ]

L8
2H2€

Last term is proportional to the first-order equation

oL d . '
(_—) = —(EG-BC) — Eﬂazc f(¢) = ZC + C+ 2H2[ (0 C) + a—Qaiaj(aicajc)] + %[@‘C&'X — 8_28i8j(8icaj)('”

6¢ ), dt



Geometrically natural variable ¢ is not a proper variable
for quantization. It is { defined by ¢ = ¢+ f(¢) €=,
with which we finc X = €0-2¢

[ 5L | |
S = §@[¢] + /dt Bz [(=2)£(¢) (E) _ g—t (%gc(aiajgaiajx _ 92%¢%x)
L 1

E(13 . T a-3
(9:0;x0;0;x — *x9*x) — ?CCQ —~ %Cgagx)]

so that S@)[(] + S®[(] = SP[¢] + Spux¢]

no boundary terms!

e H Maldacena (2003)
It satisfies { = ——5¢. Arroja Koyama (2008)

3
a
_QHQC

SI¢] = ST+ Swuneld] = M3 [ dr &z ae [«:’F ~ (9 + %n’cff]

I (azﬁ)f ! (RQET?I)I dB'I"
Cp + 3 Cp T, /(QT)ngCp—k =0 A

a“e

source term



" (G'QE)! / (G'QET?’); A’k X
Cp + T 2e Cp + 1a2e (27)3 CxCp—k = ¢ = Cf + (S

Homogeneous solution without source term ¢/() =Ap+8pf 2
Inhomogeneous solution

- T _ T1 L‘3
=1 [ met [ an (@i m) [ 5 mtmm
Tree (€p(r0)¢-p(T0)) ) = (¢h (o)L (o)) = IGp(r0) P (i)
One |00p ((C]J("O}C ( )»(1 _2<<Cp(“0 fp(TU)» <<Cp(TU)Cip(TU)>>

71 )€e(T1)

d3k
(27)?

9
(Gl p(r)) = 380 [ { (€ (o)) (7)) + 5= (Glme ) k(7 )G (7))

11111 (Ciey (T)Ciep (T)Cin (7)) = — (s (B2, ) — 1) (Ciey (T)Cien (7)) (G, (T)C—xcy (7))

1—.‘*

dlog A2(k,T)

) - 2, 4 2 . - 1 —
:_{'n'.s('l'-"Q?T)_l)|gk2(?—)| ‘(:Jiﬂl(T” s H'S(L"!}_l_ leg.‘!C-

Proper replacement of € by C yields the same answer to ours.



2308.04732 etc
Interplay between the bulk terms and surface terms of the

third-order action cancels the one-loop correction,

2 2
(3) 3 a’€f2f_ia€ 201, A€ .12
s> [ardte |51ce - (e + Gec?)|

so that our argument does not apply.

It would be very nice if this claim could be extended to all
order to show entire absence of one-loop corrections.

That would be a discovery of new symmetry and much more
interesting than what we are claiming! (Note that the Einstein
Hilbert action also consists of bulk terms and surface terms.)

Unfortunately, life is not that easy, as calculations using (
(rather than € ) are not closed at the cubic order; they
induce unacceptably large quartic corrections, indicating the
necessity to include quartic order action which will cancel
them. In the end, complicated calculations using C are
equivalent with those using ¢ ?



Smooth transition?

Comparing sharp and smooth transitions of the second
slow-roll parameter in single-field inflation
*e-Print: 2405.12145 [astro-ph.CO]



https://inspirehep.net/literature/2788273
https://inspirehep.net/literature/2788273
https://arxiv.org/abs/2405.12145
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