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Our Universe is Big, Old,
and full of structures.

All of them are big 
mysteries in the context of
evolving Universe.
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Inflation in the early Universe can solve
The Horizon Problem

Why is our Universe Big?

The Flatness Problem 
Why is our Universe Old?

The Monopole/Relic Problem
Why is our Universe free from exotic relics?

The Origin-of-Structure Problem
Why is our Universe full of structures?
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by quantum fluctuations.
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tiny Gaussian fluctuations

by exponential expansion



What I wish to address is that 
considerations of quantum loop
effects of perturbations greatly 
constrain viable class of models.

I present two specific cases,
one with non-Gaussianity
and the other with formation
of Primordial Black Holes. 

wanted to







Cosmological perturbation theory
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Introducing Mukhanov-Sasaki (MS) variable 𝑣 = 𝑧𝜁𝑀pl with 

𝑧 = 𝑎 2𝜖 , the second-order action becomes 

Simplest canonical case

Incorporating comoving curvature perturbation ζ as
with  =  and

we calculate the action for the curvature perturbation 𝜁 to 2nd order.
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∫ d𝜏d3𝑥 (𝑣′)2 − (𝜕𝑖𝑣)

2 +
𝑧′′

𝑧
𝑣2 .

behaves like a free massless scalar field 
with a noncanonical normalization.

V

𝑎(𝑡) ∝ 𝑒𝐻𝑡

𝑎 𝜏 ≅ −
1
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𝜏: conformal time

𝑔𝑖𝑗 = 𝑎2 𝑡 𝑒2𝜁𝛿𝑖𝑗
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∫ d𝜏d3𝑥 (𝑣′)2 − (𝜕𝑖𝑣)

2 +
𝑧′′

𝑧
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It has a canonical kinetic term, so can easily be quantized.

𝑣𝑘
′′ + 𝑘2 −

𝑧′′
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𝑣𝑘 = 0.
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For slow-roll inflation                   we find1,  1 = =
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ℬ𝑘

2𝑘
1 +

𝑖

𝑘𝜏
𝑒𝑖𝑘𝜏.

𝒜𝑘 = 1 and ℬ𝑘 = 0 is the solution corresponding to the Minkowski
mode function (vacuum) at high frequency or in the beginning.

𝑣𝑘(𝜏) =
1

2𝑘
𝑒−𝑖𝑘𝜏

Mukhanov Sasaki equation
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𝑖𝑘𝜏 + 𝑣𝑘
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Quantization
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Since 𝑣 has a canonical kinetic term, conjugate momentum is
simply                      and the standard quantizationˆ ˆ( , ) ( , )v  =k k

 ˆ ˆ( , ), ( , ) ( )v i    = −k k k kh

can be done with the normalization 𝑣𝑘
′∗𝑣𝑘 − 𝑣𝑘

′ 𝑣𝑘
∗ = 𝑖.

From                         , we find the mode function       
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where ⋆ denotes horizon crossing condition 𝜏 = −1/𝑘.
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Curvature perturbation:  



In the superhorizon regime            , vacuum fluctuation is 
constant and given by 
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Quantization

Vacuum expectation value yields power spectrum
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“Classicalilzation” of curvature perturbation ζ
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So we find                               
and its conjugate momentum The same operator

dependence!

When the decaying mode is negligible,          and            have the same

operator dependence and apparently commute with each other.

ˆ( , ) k ˆ ( , ) k

Long-wave quantum fluctuations behave 
as if classical statistical fluctuations.

Origin of large scale

structures and CMB

anisotropy



More precise statements
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What we find is

decreases exponentially.
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In terms of the mode function

in standard slow-roll inflation with                       . 1const  =

0] in standard slow-roll inflation.
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Horizon mass

Green & Kavanagh 2007.100722

Amplitude2

of curvature
perturbation

If one employs an inflation model producing a peaky
power spectrum on a small scale while satisfying CMB

constraints, one may produce PBHs found by GWs.
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In order to realize temporal enhancement of curvature perturbation,
one is tempted to adopt a model in which ε decreases temporarily.
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USR: ultra-slow roll period (flat potential)
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Ivanov, Naselsky, & Novikov (1994)



Ultra slow-roll (USR) inflation
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In such a regime, contrary to the standard slow-roll inflation,
curvature perturbation grows even on superhorizon scale, as it
satisfies

N Hdt= 

In the standard inflation with              ,  on superhorizon, ,| | 1  =

const =
k

3 3Ne a − − =
k

constant mode
decaying mode

“classical” perturbation

Kinney (1998,2005), JY & Inoue (2002)

Martin, Motohashi, & Suyama (2013)
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satisfies
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decaying mode
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constant mode
growing mode

In ultra slow-roll inflation with                  ,  on superhorizon1, 6  = −=

“classical” perturbation

quantum nature?

Kinney (1998,2005), JY & Inoue (2002)

Martin, Motohashi, & Suyama (2013)
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Indeed we find

4a Z

which induces significant correction as we will see shortly.

In USR, the standard wisdom does not apply!

NB Such superhorizon growth of perturbation was also found in the chaotic 
new inflation model (JY 1999) and its analytic interpretation was given in 
(Saito, JY, Nagata 2008).
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Indeed we find

4a Z

which induces significant correction as we will see shortly.

In USR, the standard wisdom does not apply!

NB To the best of my knowledge, such superhorizon growth of perturbation
was first found in the chaotic new inflation model (JY 1999) and its analytic
interpretation was given in (Saito, JY, Nagata 2008)



Mode function in ultra slow-roll inflation
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For slow-roll inflation                   we find1,  1 = =
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τ2
𝑣𝑘 = 0 both in SR and USR regimes!

Introducing Mukhanov-Sasaki (MS) variable 𝑣 = 𝑧𝜁𝑀pl with 

𝑧 = 𝑎 2𝜖 , the mode equation reads



Mode function in ultra slow-roll inflation

Initial slow-roll regime (CMB scale)

Ultra slow-roll regime (PBH scale)

The mode function in this regime is
found by matching 𝜍𝑘 and 𝜍𝑘

′ at the
transition time    .t

s

grow
3a



After some period of USR inflation, the system returns to SR regime
again and inflation is terminated at     .  t

0

At the second transition we perform similar matching again to
obtain the full solution of        .  V

k
(t )

Byrnes et. al. (1811.11158), Liu et. al. (2003.02075), 
Karam et. al. (2205.13540)

CMB

PBH

Δ𝑠(PBH)
2 ≈ Δ𝑠(SR)

2 (𝑘𝑠)
𝑘𝑒
𝑘𝑠

6

 ...



𝑆 =
1

2
∫ d4𝑥 −𝑔 𝑀pl

2 𝑅 − (𝜕𝜇𝜙)
2 − 2𝑉(𝜙) .

V
So far we have considered only second-order action
of    from the full action, which led to linear perturbation.

Third order terms generate non-Gaussianity and
one-loop correction to the power spectrum

The most relevant is the last term
as 𝜂 changes abruptly at transitions.

𝐻int(𝜏) = −
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2
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Unlike in particle physics, whose focus is transition
amplitude, we wish to evaluate an expectation value or

a correlation function.

In-in formalism 

: evaluated toward the end of inflation                    .

Perturbative expansion

𝐻int(𝜏) = −
1

2
𝑀pl
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After substituting 𝐻int 𝜏 to the perturbative expansion, we find

Time integral is nonvanishing only at 𝜏𝑠 and 𝜏𝑒
and the latter makes a dominant contribution.

As a result, we find

 −q k p
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The leading term is given by
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takes a big value at the end
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This is in contrast to the standard SR inflation 

in which Im(𝜁𝑘
′𝜁𝑘

∗) becomes exponentially small.  
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One-loop correction
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Δ𝑠(1)
2 ≪ Δ𝑠(SR)
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For perturbation theory to be valid, we require 
one loop correction << tree level (linear theory) result
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we obtain           ,  or                            .
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(𝑛𝑠 = 0.97 at 𝑘∗ = 0.05Mpc−1)



• Consider two examples that are of recent interest:

– PBHs as dark matter with mass 𝒪(10−15)𝑀⊙ corresponding 

to scale 𝒪(1014)Mpc−1 has a bound Δ𝑠(PBH)
2 ≪ 0.01.

– PBHs as LIGO-Virgo BHs with mass 𝒪(10)𝑀⊙ corresponding 

to scale 𝒪(106)Mpc−1 has a bound Δ𝑠(PBH)
2 ≪ 0.02.

• In both cases, the upper bound contradicts with typical requirement 

to form a significant abundance of PBHs, which is Δ𝑠(PBH)
2 ∼ 𝒪(0.01).

Kristiano and JY Phys Rev Lett 132, (2024)221003 



⚫ Bump or dip: Mishra and Sahni (1911.00057)

⚫ Upward or downward step: Cai et. al. (2112.13836), Inomata et. al. (2104.03972)

⚫ Polynomial shape: Hertzberg and Yamada (1712.09750), Ballesteros et. al. 

(2001.08220)

⚫ Chaotic new inflation with a Coleman-Weinberg potential: Saito, JY, & Nagata 

(0804.3470)

A number of single-field inflation models accommodating
PBH formation have the same feature, namely, sharp

transition of    . 



Conclusion
Single field inflation models predicting a large 
non-Gaussianity or PBH formation are in trouble

through consideration of higher order quantum
effects.

Microphysical
zero-point 

fluctuations

In
fla
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n

It’s time to single out 
“the inflation model”!





Δ𝑠(1)
2 (𝑝) =

1

4
(Δ𝜂(𝜏𝑒))

2Δ𝑠(SR)
2 (𝑝)∫

𝑘𝑠

𝑘𝑒 d𝑘

𝑘
Δ𝑠(0)
2 (𝑘)

Criticism I
Our first calculation incorporated only wavenumbers
leaving horizon during USR regime

introducing hard cutoffs to k integral.

One of the referees claimed proper UV regularization
and renormalization would remove all the effects we

are arguing…

I would be much surprised if this were the case, namely, 
if UV physics removes all nontrivial IR (yes, PBH is in the

IR regime in the context of UV renormalization) effect.
That would be much more interesting than what we are
claiming!!
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𝑘
Δ𝑠(0)
2 (𝑘).

Δ𝑠
2(𝑝) = Δ𝑠(0)

2 (𝑝∗)
𝑝

𝑝∗

𝑛𝑠−1
1 +

1

4
(Δ𝜂)2Δ𝑠(PBH)

2 1.1 + log
𝑘𝑒
𝑘𝑠

+ logΛ
˜
+
Λ
˜
2 − 1

2

+𝒪 (Δ𝜂)2Δ𝑠(PBH)
2 2

where Λ
˜
= Λ/𝐻.

Introducing UV divergence Λ

Total power spectrum reads



Δ𝑠(0)
2 (𝑝∗) ≡ Δ𝑠(0)

2 (𝑝∗, 𝜇
˜
)

1 +
1

4
(Δ𝜂)2Δ𝑠(0)

2 (𝑝∗, 𝜇
˜
)

𝑘𝑒
𝑘𝑠

6

−1.1 − log
𝑘𝑒
𝑘𝑠

+ log
𝜇
˜

Λ
˜ +

𝜇
˜ 2 − Λ

˜
2

2

+𝒪 (Δ𝜂)2Δ𝑠(PBH)
2 2

with 𝜇
˜
=

𝜇

𝐻
, the renormalized power spectrum reads

Defining

Δ𝑠
2(𝑝) = Δ𝑠(0)

2 (𝑝∗, 𝜇
˜
)

1 +
1

4
(Δ𝜂)2Δ𝑠(0)

2 (𝑝∗, 𝜇
˜
)

𝑘𝑒
𝑘𝑠

6

log𝜇
˜
+
𝜇
˜ 2 − 1

2

+𝒪 (Δ𝜂)2Δ𝑠(PBH)
2 2

At renormalization scale 𝜇 = 𝐻:

Δ𝑠
2(𝑝) = Δ𝑠(0)

2 (𝑝∗, 𝜇 = 𝐻)
𝑝

𝑝∗

𝑛𝑠−1

1 + 𝒪 (Δ𝜂)2Δ𝑠(PBH)
2 2

Requirement to renormalize loop correction order by order:

(Δ𝜂)2Δ𝑠(PBH)
2 ≪ 1 The same conclusion



Criticism II
A different method, so-called source method, using Maldacena’s 
consistency relation would yield somewhat smaller one-loop correction 
than what we find using the honest-to-god in-in perturbation theory. 

3rd order action for the geometrical variable ζ

𝑔𝑖𝑗 = 𝑎2 𝑡 𝑒2𝜁𝛿𝑖𝑗

Boundary terms

Last term is proportional to the first-order equation  

2303.00599



Geometrically natural variable ζ is not a proper variable
for quantization. It is ζ defined by

with which we find

so that

𝜻 = −
𝐻

ሶ𝜙
𝛿𝜙It satisfies               . Maldacena (2003) 

Arroja Koyama (2008)

no boundary terms!

source term

ζ＝ζn



Homogeneous solution without source term

Inhomogeneous solution

Tree

One loop
small

Using Maldacena’s relation here would yield an incorrect answer 
as it is a relation for the geometrical variable ζ. 

Proper replacement of ζ by ζ yields the same answer to ours.



Interplay between the bulk terms and surface terms of the 
third-order action cancels the one-loop correction,

so that our argument does not apply.

Criticism III 2308.04732 etc

It would be very nice if this claim could be extended to all 
order to show entire absence of one-loop corrections.

That would be a discovery of new symmetry and much more 
interesting than what we are claiming! (Note that the Einstein 
Hilbert action also consists of bulk terms and surface terms.)

Unfortunately, life is not that easy, as calculations using ζ
(rather than ζ ) are not closed at the cubic order; they 

induce unacceptably large quartic corrections, indicating the
necessity to include quartic order action which will cancel 
them.  In the end, complicated calculations using ζ are 
equivalent with those using ζ ? 



Loophole? Smooth transition?

Comparing sharp and smooth transitions of the second 
slow-roll parameter in single-field inflation
•e-Print: 2405.12145 [astro-ph.CO]

https://inspirehep.net/literature/2788273
https://inspirehep.net/literature/2788273
https://arxiv.org/abs/2405.12145
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